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We have been studying the three-dimensional Ising model using some finite-size 
scaling ideas. The simulation is done by a fast microcanonical method. Here we 
present our results for the critical exponents v and e. 
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The Ising model is one of the simplest theoretical systems for the study of 
phase transitions. This model can be solved analytically in two 
dimensions (~ and exhibits the typical behavior of a ferromagnet. In par- 
ticular, above a certain critical temperature the elementary magnets in a 
large sample are in a disordered state with no net bulk magnetization. On 
the other hand, below the critical temperature the magnets tend to order 
themselves parallel to one another, with a net overall magnetization. The 
more realistic three-dimensional Ising model has so far eluded analytic 
solution, though various parameters have been estimated by 
approximation techniques. Some methods, such as high-temperature series, 
are analytical in nature. Alternatively, one can simulate the model on a 
computer and effectively "measure" its properties. As bulk thermodynamic 
quantities are best determined on large systems, i.e., for a large number of 
interacting elementary magnets, clearly there is a need for large com- 
putation times and computer memory. 

What are the quantities that we wish to measure? Not all details of the 
ferromagnetic phase transition are of equal importance. The precise value 
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of the critical temperature as well as the corresponding value of the internal 
energy are relatively unimportant as they are specific to the details of the 
model and are not directly related to physical systems. They are 
nevertheless of some interest because they can be estimated by various 
methods and comparisons can be made. Moreover, their determination is 
an important antecedent to estimates of more important critical 
parameters, in particular, the critical exponents. 

Quantities such as the correlation length ~ and the specific heat C of 
the system are expected to diverge as the temperature T approaches the 
critical value Tc: 

~c IT~To- 11-~, C oc LT/TL- 11 ~ (1) 

The exponents like v, c~, etc. are believed to have a universality property, 
i.e., they should agree for a whole class of systems, including physical ones. 
Testing this universality is the primary reason for the importance of 
measuring these parameters as accurately as possible. 

Beyond universality, there are theories which predict relations among 
these exponents. In particular "hyperscaling ''(2~ predicts that v and c~ satisfy 
the relation 

vd= 2 - c~ (2) 

where d is the number of spatial dimensions. As there is some controversy 
over this relation, it is of great interest to test its validity. Hyperscaling has 
been verified for analytically solvable models in two dimensions. 

Several computer simulations of the three-dimensional Ising model 
have been carried out or are in progress/~) These studies all use the con- 
ventional Monte Carlo method for generating a sample of configurations of 
the system. They work with the canonical ensemble, wherein the tem- 
perature is an external parameter and configuration energies are distributed 
according to the Boltzmann rule, 

P(E) oc e x p ( - E / k T )  (3) 

We have been following an alternative scheme (4~ where the total system 
energy is effectively held fixed, thus sampling the microcanonical ensemble. 
The temperature is not an input. Rather, its value is determined through 
the use of a set of auxiliary variables ("demons") which exchange energy 
with the Ising lattice. Unlike conventional Monte Carlo, where random 
numbers from the computer simulate thermal fluctuations, this method sets 
up a deterministic dynamics which conserves the total energy. The demons 
interact with the spins of the system and try to invert them. If the resulting 
configuration is compatible with the constraints on energy, the change is 
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carried through. The demons then move on to act on other Spins. As in 
conventional Monte Carlo, physical quantities are measured for different 
allowed configurations and subsequently averaged. 

Although the simulations presented in this paper are modestly long, 
they are much shorter than and in no way compare with those in Ref. 3. 
Our purpose here is to give more substantial tests of the algorithms presen- 
ted in Ref. 4. Thus we wish to verify that this method can be competitive 
with more conventional canonical approaches. 

As discussed in Ref. 4, this technique reduces to the Metropolis et al. (5~ 
algorithm in any local lattice region if the demon variables make large 
jumps around the lattice. For efficiency, it is particularly important that 
this jump size be large. In particular, if the demons only move sequentially 
through the lattice, it can take a large number of iterations for a local hot 
or cold spot to dissipate. In our program the demons hop between spins 
separated by several tens of sites. 

To extract the critical exponents we use a variation of finite size 
scaling. (6t We take correlations between spins at various separations and 
form ratios which would represent dimensionless physical observables in a 
field theoretical continuum limit. Using renormalization arguments 
previously developed for lattice gauge theory, (6) we match these obser- 
vables on different length scales and on finite lattices. For example, con- 
sider an Ising system of linear size L and take the ratio of the correlation 
between spins separated by L/4 to the correlation for a separation of L/2, 
both measured at temperature T. This ratio will remove any wave function 
renormalization factors from the correlations. Now consider the same 
quantity on a new lattice of size L' and at temperature T'. In general the 
above ratio R will differ. However, if the temperatures are related in such a 
manner that the correlation lengths are in the same ratio as the sizes, then, 
as discussed for ratios of Wilson loops in Ref. 6, the ratios should be equal 
except for corrections of order the inverse corelation length. These correc- 
tions should become small near the critical point. In equations, if we adjust 
T' so that we have the matching 

then we should have 

From Eq. (1), this implies 

R(L, T)= R(L', T') (4) 

L/~ = L'/~' (5) 

(L/L') -1/'= I ( T -  Tc)/(T' - Tc)] (6) 

Now consider plotting R(L, T) versus l IT in a small region around the 
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critical point. As the lattice is finite, R is analytic and we can approximate 
it with a linear function 

R(L, T)=  A 1 + Az /T  

R(L', r')= Ai + Ai/r' 

(7) 

(8) 

The matching condition of Eq. (4) then takes the form 

A~ + A2 /T= A't + AI/T'  (9) 

As T approaches Tc and the correlation length diverges, dimensionless 
quantities involving scales much less than the correlation length should 
become scale invariant. Thus we determine Tc to be the temperature at 
which R(L, T) and R(L', T) match. This occurs at 

AI + A2/T ~ = A' 1 + A'2/Tc (10) 

Now Eq. (9) becomes 

A2(1/T~ - 1/T) = A'2(1/Tc- 1/T') (11) 

To first order in the difference from the critical temperature, this combines 
with Eq. (7) to give 

Az/A'a = (L/L')  1/~ (12) 

o r  

1Iv = ln(A2/A'2)/ln(L/L') (13) 

Thus the ratio of the slopes yields the exponent v. 
To determine c~ we use a more conventional finite-size scaling analysis. 

We work directly with the internal energy E. For an infinite system near 
the critical point this behaves as 

I E -  E~I ~ I T / T ~ -  ll ~ ~ (14) 

where Ec is the value of the internal energy at the critical point. With a 
finite-volume system, however, the internal energy is an analytic function of 
the temperature. Standard finite-size scaling arguments as presented in 
Ref. 7, or in Ref. 8 in the context of lattice gauge theory, indicate that near 
the critical temperature two finite systems of different size satisfy 

[E(L, T ) -Ec (L) - IL (1 -~ ) / v=  [E(L', T ' ) - E c ( L ' ) ] L  '~1-~)/~ (1.5) 
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where T' is determined from Eq. (5). To use this, we do a linear fit to the 
energy on our finite system in the critical region 

E(L, T) = B 1 + B2/T 
(16) 

E(L', T') = B', + B'2/T' 

With a little algebra, Eqs. (15), (16), and (6) relate the ratio of the slopes 
to the ratio a/v: 

a/v = ln( B2/ B'z)/ln( L/L') (17) 

We note at this point that although one goal would be to test the 
hyperscaling relation of Eq. (2), the above finite-size scaling analysis is not 
independent of that relation. Indeed, finite-size scaling as well as hyper- 
scaling follow from the assumption that only a single length scale is 
diverging at the critical point. If there were two distinguishable correlation 
lengths diverging at different rates, both hyperscaling and finite-size scaling 
could be questioned. Thus our analysis is not purely a test of Eq. (2), but 
should be regarded as a consistency test on both that relation and 
finite-size scaling/9) 

We have worked on lattices of size 16, 32, 48, and 64 sites for two of 
the three dimensions. The third dimension of the lattices was kept at 128 
sites for technical reasons related to the details of the multispin coded 
program. The above scaling arguments require scaling the size in all dimen- 
sions by the same ratio. Our hope is that 128 is sufficiently larger than the 
other dimensions that it can be regarded as infinite, hence insensitive to 
scale changes. 

The details of our program have been published. ~m~ As mentioned 
above, the temperatures are not inputs, as in the conventional canonical 
method, but averages derived from measurements of the energies, and thus 
they have error bars, as do the measurements of the ratios R. The internal 
energy is the difference between the total energy, an input, and the energy 
carried by the demons. The errors in this quantity are quite small, arising 
from the fluctuations in the small amount of energy in the demons. All 
these errors are incorporated into the errors in the coefficients A~, A2, B1, 
and B2 introduced above. These quantities are determined by least square 
fits to the data. The exponents l/v, a/v, and 1~To are then determined by 
least square fits to the relations 

ln(Az) = const + v -1 ln(L) (18) 

ln(B2) = const + av -~ ln(L) (19) 

A1 -- const -- T~-IA2 (20) 

which follow from the above analysis. 
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Table h Results from the Monte Carlo Simulation for the Total 
Energy, Inverse Temperature, Internal Energy, and Ratio of 

Correlations for (a) Size=16,  (b) Size=32,  (c) Size=48,  and (d) S ize=64  

Total energy Inverse temperature Internal energy Ratio of correlations 

(a) (162x 128) 

0.67447917 0.220656 • 0.000018 0.67295594 • 0.00000013 1.538 • 0.002 
0.67297363 0.220805• 0.67145154 • 1.509• 
0.67146810 0.220961~0.000014 0.66994716• 1.486• 
0.66996257 0.221134• 0.66844290• 1.467~0.002 
0.66849772 0.221285 • 0.000017 0.66697916 • 1.442 • 
0.66699219 0.221401• 0.66547448 • 0.00000009 1.419 • 0.002 
0.66548665 0.221575 • 0.66397021 • 1.403 • 
0.66398112 0221740• 0.66246589• 1.385• 

(b) (322x 128) 

0.67449951 0.221033 • 0.000021 0.67411941 • 0.00000004 1.630 • 0.016 
0.67149861 0.221357• 0.67111911• 1.523• 
0.67299398 0.221222 • 0.67261422 • 1.578 • 
0.66999308 0.221486• 0.66961381• 1.455• 
0.66849772 0.221635 • 0.66811872 • 0.00000005 1,418 • 0,008 
0.66699219 0.221699 • 0.000025 0.66661331• 1.372• 
0.66549683 0.221784• 0.66511810• 1.333• 
0.66399129 0.221940 10.000021 0.66361285 • 1.296 • 

(c) (482 x 128) 

0.67462384 0.221114• 0.67445497• 1.99• 
0.67314091 0.221299• 0.67297219• 1.76• 
0.67162182 0.221437 • 0.67145321 • 1.68 • 0.05 
0.67013889 0.221541 • 0.66997037• 0.00000002 1.50• 
0.66861979 0.221727• 0.66845142• 1.48• 
0.66713686 0.221803 • 0.000030 0.66696855 • 0.00000002 1.39 • 0.02 
0.66561777 0.221902 • 0.000030 0.66544954 • 0.00000002 1.33 • 0.04 
0.66413484 0.221914 • 0.000030 0.66396662 • 0,00000002 1.24 • 0.01 

(d) (642 x 128) 

0.67466227 0.221182• 0.67456731• 2.0• 
0.67315674 0.221326• 0.67306185 • 0.00000001 1.69 • 0.08 
0.67165120 0.221497 • 0.000025 0.67155639 • 0.00000001 1.79 • 0.09 
0.67014567 0.221607 • 0.000030 0.67005091 • 0.00000002 1.54 • 0.06 
0.66866048 0.221734• 0.66856578• 1.37• 
0.66414388 0.221873 • 0.000030 0.66404924 • 0.00000002 1.18 • 0.04 
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We measured R and T for 8 values of total energy on each of the 3 
smaller lattices (sizes 16, 32, and 48), while in the case of the lattice of size 
64, time constraints permitted the study of only 6 values. The number of 
iterations for each energy value was chosen in such a way that the errors in 
T were roughly the same in all cases. This meant reducing the number in 
inverse proportion to the number of spins. However the errors in R started 
increasing with lattice size (because the separations L/4 and L/2 increased) 
so that we had to use longer runs on our largest lattice. We did 16 x 1 0 4  

iterations for L = 16, 4 x 1 0  4 for L = 32, 2 x 104 for L = 48 and 3 x 1 0  4 for 
L = 64. The data in each case were divided into bunches for the calculation 
of statistical errors. Our bunch sizes were 4000, 1000, 500, and 250 in the 
four cases. 

The data are presented in Table I [(a), (b), (c), (d) for tl~e four lattice 
sizes]. For  each lattice size, R and E were plotted against 1/T and the 
points fitted by straight lines as indicated above. The points as well as the 
four lines for R are shown in Fig. 1. The fit is almost perfect for our 
smallest lattice but with increasing L the points get more and more scat- 
tered about the best-fit lines. This is only natural as the errors in R increase 
very rapidly. Figure 2 shows the points and the linear fits for E. Once 
again, the fits get worse with increasing size. From size 32 onwards, the 
points clearly show a bending near the critical region. Perhaps a quadratic 
fit would have been appropriate-- the errors in E are neglibible and those 
in T are not large enough to warrant the observed deviations from 
linearity. 

The parameters involved in the best fits are shown, complete with 
errors, in Table II. The variation of log A2 and log B2 with log L is shown 
in the lower and upper parts, respectively, of Fig. 3. The linear fit was 
reasonably good in both cases; the slopes, together with errors, are given in 
Table III. These are our "measured" values for 1Iv and ~/v. For com- 
pleteness we have also included our value for 1/Tc. The errors quoted here 
are purely statistical. We caution the reader that in addition there may be 

Table I1. Coefficients of the Linear Least Squares Fit for 
Lattice Sizes 16, 32, 48, and 64 

Lat t i ce  size A 1 A2 B1 B2 

16 3 2 . 5 7 + 0 . 7  -140 .66__+3 2.82 + 0,02 - -9 .73+_0 .1  

32 87.5 -t- 4 - 388.3 -t- 17 3.33 __+ 0.07 - 12.02 ___+ 0.3 

48 187.1 _____ 17 - 837.6 +_ 60 3.40 __ 0.1 - -  12.30 __+ 0.5 

64 243.7 __+ 30 - 1093 __ 130 3.78 + 0.1 - 14.01 -t- 0.6 
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Fig. 3. 
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systematic errors due to finite size and the fact that the 128 dimension of 
the lattices was not scaled. {11) The small errors on the critical temperature 
come primarily from the smallest two lattices. Longer runs on the larger 
lattices would be desirable to check for systematic effects. With this in 
mind, our results may be compared with values obtained earlier from series 

Table III. Estimates for the Critical Parameters; 
Old Values Taken from Ref. 12 

1/v ~/v 1/r~ 

Series Series & Previous 
Our  value valuem Our value hyperscaling Our  value value 

1.52 + 0.07 1.58 _+ 0.01 0,24 _+ 0.03 0.17 _+ 0.02 0.22169 _+ 0.00002 0.221655 
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expansions (12) and hyperscaling. The deviations are not quite within the 
quoted errors. But the need for greater accuracy is obvious. 

Because of uncertainties regarding the advisability of keeping our data 
for the lattice of size 64, we recalculated the critical exponents ignoring the 
last point in each of the two graphs in Fig. 3. While the value of ~/v did not 
change significantly, 1Iv went up to 1.61 • 0.05. 
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